Inorganic Chemistry

K₄Fe₄P₅O₂₀: A New Mixed Valence Microporous Compound with Elliptical Eight-Ring Channels

Zhangzhen He,*^{,†} Weilong Zhang,[†] Wendan Cheng,[†] Atsushi Okazawa,[‡] and Norimichi Kojima[‡]

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

 ‡ Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan

Supporting Information

ABSTRACT: A new small-pore compound $K_4Fe_4P_5O_{20}$ was obtained by conventional solid-state reaction in a closed crucible. The crystal structure is constructed by $Fe_4P_5O_{20}$ units forming chains along the *c* axis and elliptical eight-ring channels on the *a*-*b* plane in which K cations locate inside. Such structural characteristics seem to be quite similar to those seen in the natrolite family. However, Fe ions in $K_4Fe_4P_5O_{20}$ have trigonal-bipyramidal instead of common tetrahedral coordination. Furthermore, our experimental results combined from magnetic susceptibility and ⁵⁷Fe Mössbauer spectrum measurements show mixed valence Fe³⁺/Fe²⁺ in the titled material. To the best of our knowledge, this is the first example that contains mixed valence iron ions in a socalled natrolite framework.

7 eolites are a class of microporous materials, which are Widely used in practical applications such as catalysis, ion exchange, and gas separation. Generally, zeolites crystallize in a variety of low-density framework structures built by cornerconnected networks of tetrahedral (TO₄), yielding cavities or channels of molecular dimensions. Traditionally, natural and synthetic zeolites are aluminosilicates with the numerous linkages of AlO₄ and SiO₄ tetrahedra that bound nanopores of various sizes. Among these aluminosilicate-based zeolites, natrolite $(Na_2Al_2Si_3O_{10}\cdot 2H_2O)$ is one of the most interesting naturally occurring zeolites, for which the chemical composition was known in the early 1800s¹ and the crystal structure was established in 1930s.² The framework of natrolite is composed of Al₂Si₃O₁₀ units with SiO₄ and AlO₄ tetrahedra forming infinite chains along the c axis, and chains link each other to form a two-dimensional elliptical eight-ring channel on the a-bplane in which Na cations and water molecules locate inside (Figure 1a). Over the past several decades, such unique chemical and structural characteristics of natrolite have been extensively studied.³⁻¹³ Since the discovery of a large family of aluminophosphate-based zeolites, the search for nonaluminosilicate-based microporous materials has become of considerable interest.¹⁴ Å large number of zeolites with new framework topologies based on gallogerminates,¹⁵ aluminogerminates,¹⁵ zincophosphates,¹⁶ and aluminophosphates¹⁷ have been synthesized using a substitution with tetrahedral GaO4, GeO_4 , ZnO_4 , or PO_4 for AlO_4 or SiO_4 , respectively. At present, about ~190 natural and synthetic zeolite species with the

Figure 1. (a) The structure of natrolite $Na_2Al_2Si_3O_{10}$ ·2H₂O, where purple and blue tetrahedra represent AlO₄ and SiO₄, respectively; yellow, pink, and red balls are Na cations, H, and O atoms. (b) The structure of K₄Fe₄P₄O₂₀, where brown trigonal bipyramids, gray tetrahedra, and purple and red balls represent FeO₅, PO₄, K cations, and O atoms, respectively.

opening sizes of pores and channels from 0.2 to 2 nm have been reported. $^{18}\,$

Because of the potential importance in industrial catalysis, many efforts have been made to obtain transition-metalcontaining zeolite analogues.¹⁹ An introduction of transitionmetal cobalt into substituted aluminophosphates was successfully realized by controlling the ratio of Co/Al.²⁰ However, the percentage of transition-metal substitution is very limited in such Co–Al–P–O systems. In fact, a full (100%) substitution with transition-metal atoms for the tetrahedral-coordination of main group atoms (e.g., T = Si, Al, P, Ga, Ge, etc.) seems to be difficult, since the transition-metal atoms with large ion radii usually tend to form octahedral coordination in the oxygenligand environment according to the Pauling's rules.²¹ Therefore, almost no zeolites, especially for natrolite-like materials

Received: June 12, 2012 **Published:** June 28, 2012 with transition metals (e.g., M = Ni, Co, Fe, Mn, etc.) in the framework built by (MO_n) and (TO_4) polyhedra, have been reported up to date.²²

In this Communication, we report a new microporous compound $K_4Fe_4P_5O_{20}$. The framework is composed of FeO₅ and PO₄ polyhedra, forming elliptical eight-ring channels on the *a*-*b* plane which seem to be quite similar to those of Na₂Al₂Si₃O₁₀·2H₂O. However, $K_4Fe_4P_5O_{20}$ exhibits different oxygen-coordination and linkages of polyhedra, compared to Na₂Al₂Si₃O₁₀·2H₂O. Furthermore, the titled material is confirmed to have mixed valence Fe³⁺/Fe²⁺ ions in the framework. To the best of our knowledge, $K_4Fe_4P_5O_{20}$ is the first ferrophosphate-based microporous material with a mixed valence.

Unlike almost all of the zeolite natrolite analogues synthesized with the hydrothermal method, single crystals of $K_4Fe_4P_5O_{20}$ were obtained by a conventional high-temperature solid-state reaction. The mixture of high purity reagents of K_2CO_3 (6.9 g), Fe_2O_3 (16 g), $NH_4H_2PO_4$ (23 g), and KF (5.8 g) was ground carefully to homogeneity in an agate mortar and then was fully packed into an alumina crucible (Φ 42 × 50 mm³). The crucible was capped with a cover using Al_2O_3 cement (C-989, Cotronics Corp.). Such a closed crucible was put into a homemade electric furnace, and then the furnace was heated up to 1050 °C and kept at 1050 °C for 10 h to ensure that the solution melted completely and homogeneously. The furnace was cooled slowly down to 700 $^{\circ}$ C at a rate of 1 $^{\circ}$ C/h, kept at a constant temperature, and then cooled down to room temperature at a rate of about 100 °C/h. With this procedure, gray crystals were obtained by mechanical separation from the crucible. It is noted that single crystals of K₄Fe₄P₅O₂₀ cannot be obtained successfully using K₂CO₃, Fe₂O₃, and NH₄H₂PO₄ as the starting materials under the same growth conditions owing to the large viscosity of the solution. To decrease the viscosity and to improve the crystallization, the mixtures of KF (5.8 g)and K_2CO_3 (6.9 g) were adopted instead of full K_2CO_3 (13.8 g) in this growth procedure. Also, the appearance of mixed valence iron ions (Fe^{3+}/Fe^{2+}) may be due to reducing gas NH₃ arising from the decomposition of NH₄H₂PO₄ in the closed crucible.

The crystal structure of $K_4Fe_4P_5O_{20}$ was solved and refined on the basis of the single-crystal data.²³ $K_4Fe_4P_5O_{20}$ crystallizes in the tetragonal system with space group $P\overline{4}2c$. As shown in Figure 1b, a three-dimensional (3D) framework is constructed from Fe₄P₅O₂₀ units which are composed of full corner sharing of FeO₅ trigonal bipyramids and PO₄ tetrahedra. The FeO₅ trigonal bipyramids are slightly distorted with different Fe-O distances (1.903–1.984 Å), while the PO_4 tetrahedra have two types of distorted $P^{I}O_{4}$ ($P^{I}-O = 1.494-1.569$ Å) and nondistorted $P^{II}O_4$ ($P^{II}-O = 1.527$ Å). FeO₅ trigonal bipyramids are linked with PIO4 tetrahedra to each other via a corner-sharing oxygen atom to form a cluster ($Fe_4P_4^IO_{16}$). The clusters are connected with P^{II}O₄ tetrahedra to form chains running along the c axis. Furthermore, the chains are linked to each other through corner-shared FeO₅-P^IO₄ to form elliptical eight-ring channels, in which potassium ions are located. We note that the elliptical eight-ring channels in the titled material are quite similar to those of natrolite Na2Al2Si3O10.2H2O (Figure 1a). However, the elliptical eight-ring channels in natrolite are not a closed but exist in a helical arrangement, corresponding to the space group Fdd2. One of the most remarkable differences is seen in the chains running along the *c* axis, showing that the building $Fe_4P_5O_{20}$ units of $K_4Fe_4P_5O_{20}$ follow the 4 = 4 = 1 type of $\{-(P^{II}O_4)=(2FeO_5-$ $2P^IO_4) = (2FeO_5 - 2P^IO_4) = (P^{II}O_4) - \}_{\infty}$, while the $Al_2Si_3O_{10}$ units of $Na_2Al_2Si_3O_{10} \cdot 2H_2O$ are the 4 = 1 type of $\{-(Si^{II}O_4) = (2AIO_4 - 2Si^{I}O_4) = (Si^{II}O_4) - \}_{\infty}$. Although the polyhedra in their frameworks connect to each other by corner-sharing, a difference in the linkage of polyhedra is clearly seen, where all of the PO_4 in $K_4Fe_4P_5O_{20}$ connect to FeO_5 $(PO_4 - FeO_5 - PO_4)$ via a corner-sharing oxygen atom, whereas the connection of SiO_4 and SiO_4 $(Si^{I}O_4 - Si^{II}O_4)$ exists in $Na_2Al_2Si_3O_{10} \cdot 2H_2O$. Such a difference may be due to the ratio of Si/Al = 1.5 in $Na_2Al_2Si_3O_{10} \cdot 2H_2O$ and P/Fe = 1.25 in $K_4Fe_4P_5O_{20}$, according to Loewenstein's rule.²⁴

To check the zeolitic behaviors of $K_4Fe_4P_5O_{20}$, the experiments of gas sorption using N_2 (the dynamic diameter Φ 3.64 Å) and H_2 (Φ 2.89 Å) were carried out at 77 K. Except for a little surface absorption, almost no N_2 gas sorption is seen in the N_2 sorption isotherms (Figure 2a). Considering that N_2

Figure 2. The gas sorption isotherms of $K_4Fe_4P_5O_{20}$ at 77 K. (a) N_2 and (b) H_2 . P/P_0 is the ratio of gas pressure (P) to saturated pressure (P_0) with $P_0 = 760$ mmHg.

belongs to one of the larger gas molecules, this is thus in good agreement with the sorption properties of microporous compounds such as natrolite analogues with a small pore size that is also crowded with the cations such as K⁺ or Na^{+,25} For one of the smallest gases, H₂, a linear increase in the uptake with increasing pressure is however seen in the H₂ sorption isotherms (Figure 2b), confirming the reversible sorption behavior of K₄Fe₄P₅O₂₀. Since the channels (~10.01 × 3.76 Å²) in K₄Fe₄P₅O₂₀ are smaller than that (~10.01 × 4.89 Å²) in Na₂Al₂Si₃O₁₀·2H₂O, whereas the radius of K⁺ located inside the channels is larger than that of Na⁺, it is reasonable that K₄Fe₄P₅O₂₀ exhibits less pronounced sorption behaviors compared to Na₂Al₂Si₃O₁₀·2H₂O.

To confirm mixed valence Fe ions in K₄Fe₄P₅O₂₀, magnetic and ⁵⁷Fe Mössbauer measurements were performed. Figure 3a shows the temperature dependence of the magnetic susceptibilities measured in an applied field of 0.1 T. The susceptibilities increase with decreasing temperature, and typical Curie-Weiss behavior is observed above 30 K, giving the Curie constant C = 16.538 emu K/mol and Weiss constant θ = -107.02 K. The effective magnetic moment (μ_{eff}) is calculated to be 5.751 $\mu_{\rm B}$, which is larger than the value of 4.899 $\mu_{\rm B}$ for S = 2 (high spin state of Fe²⁺ ions) and smaller than that of 5.916 $\mu_{\rm B}$ for S = 5/2 (high spin state of Fe³⁺ ions) with a g factor of 2, showing a mixed valence of Fe^{2+}/Fe^{3+} in the system. Figure 3b shows the 57Fe Mössbauer spectrum measured at room temperature. The spectrum consists of paramagnetic doublets which are assigned to high-spin Fe3+ (isomer shift of ~0.5 mm/s) and Fe²⁺ ions (that of ~1.3 mm/s).²⁶ The area ratio of the two doublets (Fe^{3+}/Fe^{2+}) is about 76:24 (as seen in Table S6, Supporting Information), agreeing with the occupation of $3\bar{/}4~Fe^{3\bar{+}}$ and $1/4~Fe^{2\bar{+}}$ ions in $Fe_4P_5O_{20}$ units

Figure 3. (a) The temperature dependence of the magnetic susceptibilities and the reciprocal one measured in an applied field of 0.1 T. (b) The Mössbauer spectrum measured at room temperatures, where the circles are experimental data and the lines are the fits using a Lorentzian function.

suggested by structural analysis. The results give concrete evidence for mixed valence iron ions in the titled material.

In summary, a new microporous compound $K_4Fe_4P_5O_{20}$ with a natrolite-like framework was obtained by conventional hightemperature solid-state reaction in a closed alumina crucible. Unlike the natrolite family, Fe ions in a framework have trigonal-bipyramid instead of tetrahedral oxygen-coordination. The reversible H_2 gas sorption behaviors were confirmed, showing less pronounced sorption abilities owing to small channels that are also crowded with the large K^+ ions. Furthermore, our experimental results combined from magnetic susceptibility and ⁵⁷Fe Mössbauer spectrum measurements confirmed mixed valence Fe^{3+}/Fe^{2+} ions in $K_4Fe_4P_5O_{20}$. The present results would open a new route to search for transitionmetal-containing microporous materials with a high-temperature solid-state reaction.

ASSOCIATED CONTENT

Supporting Information

The detailed experiments and structural and Mössbauer spectral parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hezz@fjirsm.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Professor Jian Zhang in FJIRSM for his help with gas sorption experiments. This work was financially supported by the NSFC (Grant No. 11074250), the National Basic Research Program of China (No. 2012CB921701), the NSF of Fujian Province (2010J01019), and Program for Excellent Talents in Fujian Province.

REFERENCES

(1) Klaproth, M. H. Ges. Naturforsch. Freunde Berlin, Neue Schrifl. 1803, 4, 243.

- (2) Pauling, L. Proc. Natl. Acad. Sci. U. S. A. 1930, 16, 453.
- (3) Taylor, W. M.; Meek, C. A.; Jackson, W. W. Z. Kristallogr. 1933, 84, 373.
- (4) Meir, W. M. Z. Kristallogr. 1960, 113, 430.
- (5) Stuckenschmidt, E.; Joswig, W.; Baur, W. H. Phys. Chem. Miner. 1994, 21, 309.
- (6) Ghermani, N. E.; Lecomte, C.; Dusausoy, Y. Phys. Rev. B 1996, 53, 5231.
- (7) Lee, Y.; Hriljac, J. A.; Kim, S. J.; Hanson, J. C.; Vogt, T. J. Am. Chem. Soc. 2003, 125, 6036.
- (8) Lee, Y.; Kim, S. J.; Kao, C.-C.; Vogt, T. J. Am. Chem. Soc. 2009, 131, 7554.
- (9) Lee, Y.; Vogt, T.; Hriljac, J. A.; Parise, J. B.; Artioli, G. J. Am. Chem. Soc. 2002, 124, 5466.
- (10) Lee, Y.; Vogt, T.; Hriljac, J. A.; Parise, J. B.; Hanson, J. C.; Kim, S. J. *Nature* **2002**, *420*, 485.
- (11) Lee, Y.; Lee, Y.; Seoung, D. Am. Mineral. 2010, 95, 1636.
- (12) Shin, J.; Bhange, D. S.; Camblor, M. A.; Lee, Y.; Kim, W. J.; Nam, I.-S.; Hong, S. B. J. Am. Chem. Soc. 2011, 133, 10587.
- (13) Hill, G. L.; Bailey, E.; Stennett, M. C.; Hyatt, N. C.; Maddrell, E.
- M.; McMillan, P. F.; Hriljac, J. A. J. Am. Chem. Soc. 2011, 133, 13883. (14) Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.;
- Flanigen, E. M. J. Am. Chem. Soc. **1982**, 104, 1146. (15) Bu, X.; Feng, P.; Gier, T. E.; Zhao, D.; Stucky, G. D. J. Am.
- Chem. Soc. 1998, 120, 13389.
- (16) Feng, P.; Bu, X.; Stucky, G. D. Angew. Chem., Int. Ed. 2009, 48, 6647.
- (17) Vaughan, D. E. W.; Yennawar, H. P.; Perrotta, A. J. *Chem. Mater.* 2006, 18, 3611.
- (18) Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, 2007.
- (19) Bellussi, G.; Rigutto, M. S. Innovation in Zelolite Materials Science; Elsevier: Amsterdam, 1994; pp 177–213.
- (20) Feng, P.; Bu, X.; Stucky, G. D. Nature 1997, 388, 735.
- (21) Pauling, L. J. Am. Chem. Soc. 1929, 51, 1010-1026.
- (22) Dyer, A.; Faghihian, H. Microporous Mesoporous Mater. **1998**, 21, 27.

(23) Crystal data of K₄Fe₄P₅O₂₀: Mr = 854.65, tetragonal, $P\overline{42}c$ with a = 9.7450(7) Å, c = 9.3800(9) Å, V = 890.77(12) Å³, Z = 2, $\rho = 3.186$ g cm⁻³, F(000) = 830, $\mu = 4.521$ mm⁻¹, T = 293(2) K. A total of 6606 reflections were collected in the range $2.96^{\circ} < 2\theta < 27.47^{\circ}$. The final least-squares refinements converged at R1 (wR2) = 0.0466 (0.1272) and $F^2 = 1.096$ for 1015 reflections and 75 parameters with $I > 2\sigma(I)$. (24) Loewenstein, W. Am. Mineral. **1954**, *39*, 92.

- (24) Loewenstein, W. Am. Mineral. 1934, 39, 92.
- (25) Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974; p 636.
- (26) Hermann, R. P.; Hatert, F.; Fransolet, A.-M.; Long, G. L.; Grandjean, F. Solid State Sci. 2002, 4, 507.